Pseudacanthicus pitanga: a new species of Ancistrini (Siluriformes: Loricariidae: Hypostominae) from rio Tocantins Basin, North Brazil

CARINE C. CHAMON
Laboratório de Ictiologia Sistemática, Universidade Federal do Tocantins – UFT, Campus de Porto Nacional, Setor Jardim dos Ipês Rua 3, Quadra 17, s/n, Caixa Postal 136, CEP 77500-000. E-mail: chamon.carine@gmail.com

Abstract

The genus *Pseudacanthicus* comprises five valid species distributed in the Amazon, Guyana and Suriname basins: *P. serratus*, *P. fordii*, *P. histrix*, *P. spinosus* and *P. leopardus*. A new species of *Pseudacanthicus* from the Tocantins river basin is described. The new species is distinguished from its congeners by the following combination of characters: presence of dark blotches anastomosing to form continuous zigzag bands alongside longitudinal keels; absence of blotches on ventral surface of body; faint blotches on head; all fins with orange to red color on unbranched ray and sometimes on subsequent branched rays; and sphenotic and sixth infraorbital not in contact. Brief comments on the phylogeny of the genus, ornamental fisheries activities, threats and conservation of the new species are also provided.

Key words: Acari, Amazon Basin, Ornamental fishery, Neotropical, taxonomy

Resumo

O gênero *Pseudacanthicus* compreende cinco espécies válidas distribuídas nas bacias Amazônica, das Guianas e Suriname: *P. serratus*, *P. fordii*, *P. histrix*, *P. spinosus* e *P. leopardus*. Uma nova espécie de *Pseudacanthicus* descrita para o baixo, médio e alto rio Tocantins. A nova espécie diferenciada de suas congêneres pela combinação dos seguintes caracteres: presença de manchas escuras anastomosadas e formando faixas em zig-zag ao longo das laterais do corpo; ausência de manchas na superfície ventral do corpo; manchas fracas na cabeça; todos os raios não ramificados das nadadeiras com padrão de colorido laranja a vermelho, e às vezes nos raios ramificados subsequentes; ausência de contato do esfenótico com o sexto infra-oral. Breves comentários sobre a sistemática do gênero, as atividades de pesca ornamental, ameaças e conservação da nova espécie são também fornecidos.

Introduction

The Loricariidae is the largest family of the Siluriformes and includes more than 900 species (Eschmeyer & Fong, 2015), which represents about 25% of the diversity of catfishes (Reis et al., 2003; Ferraris, 2007). The family is widely distributed in the Neotropical region, from southeastern Costa Rica to northeastern Argentina (Isbrücker, 1980), and can be found in a large variety of freshwater environments.

The genus *Pseudacanthicus* is included in the *Acanthicus* group (Ancistrini *sensu* Armbruster, 2004), with the genera *Acanthicus*, *Megalancistrus* and *Leporacanthicus* (clade 73). The *Acanthicus* group can be easily diagnosed among other loricariids by the presence of rows of keels formed by hypertrophied odontodes along the body, and by a dorsal fin with eighth or more rays (except *Pterygoplichthys* and *Chaetostoma*). In the *Acanthicus* group, *Pseudacanthicus* can be diagnosed from the remaining genera by the presence of two small plates in the posterior area of pterotic-supracleithrum (instead of one median plate or plate absent); several other features also distinguish it from other genera (detailed in Discussion).

Pseudacanthicus comprises five valid species distributed in the Amazon basin and coastal drainages of Guyana and Suriname. The type species was described as *Hypostomus serratus* Valenciennes in *Cuvier & Valenciennes*...
1840, with distribution restricted to the costal drainages of Guyana and Suriname. Bleeker (1862) subsequently proposed a new genus, *Pseudacanthicus*, to include *H. serratus*, a combination that is still valid. Other currently valid species of *Pseudacanthicus* are: *P. fordi* Günther 1868, from costal drainages of Suriname, which is just know from its sytypes; *Pseudacanthicus histrix* Valenciennes 1840 and *P. spinosus* Castelnau 1855, occurring in the Negro and Amazon rivers basins, and *Pseudacanthicus leopardus* Fowler 1914, described from the Rupununi river basin at Guyana.

Recent studies on the taxonomy of *Pseudacanthicus* suggest that *P. fordi* is probably a synonym of *P. serratus*, as well as *P. spinosus* and *P. histrix*. Furthermore, the diversity of the genus is probably underestimated, with at least five undescribed species inhabiting tributaries of the Amazon river (Chamon, 2012). Due to the lack of information about some species of the genus, widespread misidentifications, presence of several undescribed species, and a great color variation among subpopulations, it is clear that a more detailed study of the taxonomy of the genus is needed (Chamon, in. prep.). These questions are beyond the scope of this work; however, for conservation purposes, the description of the new species is necessary. Thus, a new species of *Pseudacanthicus* from rio Tocantins basin is described here, and brief comments on the phylogeny of the genus, the impact of ornamental fisheries on this species and its conservation are also presented.

Material and methods

Measurements were made with digital calipers, point-to-point, on the left side of the specimens and to the nearest 0.1 mm, following Armbruster (2003). Specimens were cleared and stained (c&s) according to Taylor & Van Dyke (1985). Osteological nomenclature and vertebral counts follow Schaefer (1987) and Armbruster (2004); vertebral counts include the first five vertebrae modified into Webberian apparatus. Plate counts follow Schaefer (1997). Fused pre-ural centrum is counted as a single element according to Lundberg & Baskin (1969). Terminology for the laterosensory system of the head follows Arratia & Huquier (1995). Material examined was described in the following order: catalog number, specimen count, minimum and maximum measurements, locality, geographical coordinates, date of collection and collectors. Some lots have missing data concerning date of collection and/or collectors. Specimens examined belong to the following institutions: Academy of Natural Sciences of Philadelphia (ANSP), American Museum of Natural History (AMNH), Auburn University Museum (AUM), Natural History Museum (BMNH), Instituto Nacional de Pesquisa da Amazônia (INPA), Muséum National d’Histoire Naturelle (MNHN), Museu de Zoologia da Universidade de São Paulo (MZUSP), Naciona Natuurhistorisch Museum, formerly Rijksmuseum van Natuurlijke Historie (RMNH), Coleção de Peixes do Laboratório de Ictiologia Sistemática da Universidade Federal do Tocantins (UNT) and Zoological Museum Amsterdam (ZMA).

Pseudacanthicus pitanga sp. nov.

(Figs. 1–2; Tab. 1)

Holotype. MZUSP 34296, 220.7 mm SL, Serra dos Carajás, bedrock at rio Itacaiunas, Serra dos Carajás, Pará, Brazil, 05032’00"W 0552’00"S, Nov 1983, M. Goulding.

Non-type material. Brazil, Pará state, rio Tocantins. ZMA 119.395, 3, 88.5–89.2 mm SL, Tucuruí, about 2 km below dam, 346'29.47"S 4939'9.64"W, 9 Oct 1984, G. Mendes dos Santos. ZMA 119.829, 1, 82.8 mm SL, Cametá, 0214'S, 04930'W, Jul 1985, A. Werner.

No data. AMNH 97659, 1, 82.8 mm SL.

Diagnosis. Pseudacanthicus pitanga, sp. nov., is distinguished from its congeners (except *P. leopardus*) by its color pattern with intense orange to red fins (vs. dark background color with white spots in *P. serratus* and *P. fordii* or gray background color with black blotches in *P. histrix* and *P. spinosus*). It can be distinguished from *P. leopardus* by the presence of dark blotches anastomosing to form continuous zigzag bands alongside longitudinal keels; absence of blotches on ventral surface of body; faint blotches on head and all fins with orange to red color on unbranched ray and sometimes on subsequent branched rays (dark blotches conspicuous, never anastomosed; large dark blotches on ventral surface; conspicuous dark blotches on head; and red color restricted to dorsal and caudal-fin rays). *Pseudacanthicus pitanga* can be further diagnosed from congeners by the following combination of osteological characters: contact of sphenotic with sixth infraorbital absent (Fig. 3; vs. present in remaining species), lateral surface of metapterigoid channel triangular (vs. rounded in remaining species), posterior area of contact between cleithrum and coracoid ventrally expanded (vs. straight in remaining species).

Description. Morphometric and meristic data summarized in Table 1. Dorsal profile of body slightly convex from tip of snout to vertical through dorsal-fin origin; concave, nearly straight from that point to caudal-fin origin. Ventral profile of body straight from snout tip to caudal-fin origin. Ventral surface from tip of snout to urogenital membrane. Dorsal-fin spinelet V-shaped with locking mechanism. Eight furcate neural spines supporting dorsal fin. Pectoral and pelvic fins well developed, median portion conspicuously expanded relative to base; distal margin very long, its length equals to 12 dorsal plates, reaching pre-adipose plate; connected to adipose fin by thick membrane. Dorsal-fin spinelet V-shaped with locking mechanism. Eight furcate neural spines supporting dorsal fin. Pectoral and pelvic fins well developed, median portion conspicuously expanded relative to base; distal margin...

TABLE 1. Morphometric and meristic data of *Pseudacanthicus pitanga* based on 31 specimens and the holotype. SD = Standard deviation.

<table>
<thead>
<tr>
<th>Character</th>
<th>Holotype</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MZUSP 34296</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard length (SL)</td>
<td></td>
<td>220.7</td>
<td>300.0</td>
<td>165.1</td>
<td>-</td>
</tr>
<tr>
<td>Predorsal length</td>
<td></td>
<td>47.8</td>
<td>72.3</td>
<td>45.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Head length (HL)</td>
<td></td>
<td>38.0</td>
<td>59.6</td>
<td>45.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Bory length at dorsal-fin origin</td>
<td></td>
<td>23.7</td>
<td>28.3</td>
<td>20.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Cleithral width</td>
<td></td>
<td>33.3</td>
<td>48.2</td>
<td>30.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Thorax length</td>
<td></td>
<td>21.7</td>
<td>39.3</td>
<td>25.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Pectoral-spine length</td>
<td></td>
<td>39.4</td>
<td>52.1</td>
<td>32.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Abdominal length</td>
<td></td>
<td>29.1</td>
<td>34.9</td>
<td>26.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Pelvic-spine length</td>
<td></td>
<td>35.5</td>
<td>48.6</td>
<td>29.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Postanal length</td>
<td></td>
<td>32.8</td>
<td>51.2</td>
<td>32.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Anal-fin spine length</td>
<td></td>
<td>24.3</td>
<td>31.4</td>
<td>20.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Dorsal spine length</td>
<td></td>
<td>41.8</td>
<td>54.2</td>
<td>34.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Dorsal-fin base length</td>
<td></td>
<td>26.9</td>
<td>46.2</td>
<td>28.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Caudal peduncle depth</td>
<td></td>
<td>16.8</td>
<td>22.1</td>
<td>14.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Orbit diameter</td>
<td></td>
<td>9.6</td>
<td>16.4</td>
<td>13.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Snout length</td>
<td></td>
<td>62.7</td>
<td>69.2</td>
<td>63.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Internares width</td>
<td></td>
<td>16.7</td>
<td>18.2</td>
<td>14.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Interorbital width</td>
<td></td>
<td>36.9</td>
<td>38.5</td>
<td>33.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Head depth</td>
<td></td>
<td>59.0</td>
<td>60.4</td>
<td>52.2</td>
<td>5.5</td>
</tr>
<tr>
<td>Mouth length</td>
<td></td>
<td>41.0</td>
<td>50.5</td>
<td>42.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Mouth width</td>
<td></td>
<td>39.5</td>
<td>48.4</td>
<td>39.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Dentary tooth cup length</td>
<td></td>
<td>9.2</td>
<td>11.8</td>
<td>8.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Premaxillary tooth cup length</td>
<td></td>
<td>4.6</td>
<td>9.9</td>
<td>4.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Meristics</td>
<td></td>
<td>Mode</td>
<td>Mode</td>
<td>Mode</td>
<td>Mode</td>
</tr>
<tr>
<td>Dorsal plate series</td>
<td></td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Mid-dorsal plate series</td>
<td></td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Median plate series</td>
<td></td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Mid-ventral plate series</td>
<td></td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Ventral plate series</td>
<td></td>
<td>13</td>
<td>20</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>Precaudal plates</td>
<td></td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Premaxillary plates</td>
<td></td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Dentary teeth</td>
<td></td>
<td>13</td>
<td>16</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>
FIGURE 1. Holotype of *Pseudacanthicus pitanga*, MZUSP 34296, 220.7 mm of SL.
FIGURE 2. Color in life *Pseudacanthicus pitanga*, adult and juvenile aquarium specimens (Images by Erlend Bertelsen).

Color in life. Dorsal surface of trunk pale brown with median dark blotches that might be faint in juveniles and some adults; dark blotches anastomosing to form continuous zigzag bands alongside longitudinal keels in most specimens. Head without well-defined spots or blotches. Ventral surface pale, sometimes with some few faint spots in the abdominal region; spots in general absent in most specimens. All fins with orange or almost red color, at least in the unbranched fin-rays; more evident in the dorsal and caudal unbranched fin-rays. Juvenile specimens (in most cases) with dorsal and caudal fin almost completely faint orange without dark blotches.

Color in alcohol. Specimens in alcohol usually exhibit the same color pattern when live, but in most cases the orange coloration of fins and blotches on body are inconspicuous and faint.

Distribution. *Pseudacanthicus pitanga* probably occurs throughout the median and lower rio Tocantins. The species was recorded in the lower Tocantins river basin, at Serra dos Carajás, Tucuruí and Cametá, Pará state, and median Tocantins river basin, between São Salvador and Lajeado, Tocantins state (Fig.4).

Fisheries and economic importance. Because of its flashy and beautiful color pattern, the species of *Pseudacanthicus*, although not formally described, are very well known by local fishermen and the aquarist community, being an economic resource in some cases. Specimens of *Pseudacanthicus pitanga*, like other ornamental species, are exported to several countries worldwide, especially in Europe and the U.S.A., which has enabled many aquarists to breed them (E. Bertelsen, pers. comm.). *Pseudacanthicus pitanga* is economically important in the aquarium trade as an ornamental fish. The ornamental fish exploration has been a common practice in lower Tocantins in the Marabá region, and *P. pitanga* is recognized in the L number aquarist system as L024 (Schraml & Schaefer, 2004). Ornamental fishes are usually captured by diving with the aid of an air compressor, a collecting technique that is very common in ornamental fish exploration centers, such as in Marabá (Tocantins), Altamira (Xingu), and Santarém and Itaituba (Tapajós) (more about capture techniques in Sousa & Birindelli, 2009).

Etymology. The specific epithet *pitanga* derives from Tupi-Guarani, meaning red, in allusion to the color of fins. An adjective.
A NEW SPECIES OF ANCISTRINI FROM NORTH BRAZIL

Zootaxa 3973 (2) © 2015 Magnolia Press · 315

Discussion

According to Armbruster's (2004) hypothesis of the generic relationships within Ancistrini, *Pseudacanthicus* is included in the *Acanthicus* group, where the genera *Acanthicus* and *Megalancistrus* are closely related as sister taxa and form a clade that is sister group to *Pseudacanthicus* and *Leporacanthicus* (clade 73). The *Acanthicus* group is very well supported by 11 synapomorphies, and the most remarkable of that assemblage is the presence of well-developed keels with sharp odontodes along the body.

The genus *Pseudacanthicus* can be distinguished from remaining genera in the *Acanthicus* group by the presence of two small plates in the posterior area of pterotic-supracleithrum (vs. just one median plate or plate absent). It can be distinguished from *Acanthicus* by the presence of an adipose fin, small pterotic-supracleithrum, and dentaries and premaxillae short and elongate, from *Megalancistrus* by a lower count of dorsal fin-rays (8–9 vs. 10–11), and from *Leporacanthicus* by the higher count of premaxillary teeth (up to 12 vs. up to 4), and the presence of caudal filaments, at least in juveniles.

In recent studies on phylogeny of the *Acanthicus* group, *Pseudacanthicus* was proposed as the sister-group of *Leporacanthicus* based on the presence of elongate and recurved teeth, an elongated snout, and a crest in the compound pterotic, among other osteological characters (Chamon, 2012). In fact, both genera are strikingly similar in terms of general anatomy, which results in several misidentifications in collections.

The number of teeth on the premaxillae and dentary has been proposed by several authors as diagnostic of genera and species in the Loricariidae, and as evidence of relationships among groups included therein (e.g. Boeseman, 1971; Muller & Weber, 1992; Schaefer, 1997). The occurrence of elongated and recurved teeth on premaxillae suggests that *Pseudacanthicus*, like *Leporacanthicus*, can consume different food resources, such as...
snails and small crabs, and not only algae attached to the substrate. The reduction of premaxillae teeth in *Pseudacanthicus* is related to premaxilla size and shape, which is elongate and narrow in the genus. An elongated caudal fin and the presence of filaments in it are more commonly observed in fishes that inhabit great river channels in South America. Those features have been proposed as possibly related to mechanic and sensorial perception against predators (Lujan & Chamon, 2008), and may have the same function in species of *Pseudacanthicus*.

FIGURE 4. Distribution map of *Pseudacanthicus pitanga*, red circle correspond to type locality.

The species studied here has commercial interest as an ornamental fish. The commercial exploration of ornamental fishes is a common practice in several localities (e.g. Marabá, Altamira, Belo Monte, Itaituba, Santarém, all in Pará state), and in most cases is the livelihood of generations of fishermen. It has been argued that the ornamental fish trade can be harmful to fish populations, and because of this some control measures have been implemented. Thus, capture of species that are considered endangered is forbidden according to the Normative Instruction MMA 05/2004 of the Brazilian Government. According to Andrews (1990), the only way that ornamental fishery activities affect natural populations is by the introduction of exotic species and by direct decrease of stocks by overfishing. More recently, Camargo *et al.* (2011) reported that in the Xingu and Tapajós regions, the ornamental fishery, apparently, is a less impacting activity when compared to more serious environmental problems that occur in the region, such as mining, deforestation and construction of several dams. Thus, it would be better to allow fishermen to continue these activities and prevent them from moving to more devastating actions. On the other hand, due to the difficulties in monitoring the ornamental fish trade by responsible agencies, it is predictable that there is a high rate of illegal trade. Even so, only a small number of endangered species (as reported by the International Union for Conservation of Nature, IUCN) has some commercial value in the ornamental aquarium trade. In this specific case, the commercial exploration of *Pseudacanthicus pitanga* is not considerate a threat at present.

The most imminent danger for Amazonian loricariid species commercialized in the ornamental trade is certainly the construction of hydroelectric dams. As a result of that activity, considerable stretches of the river are
transformed from a lotic to a lentic condition. Fishes that live in the former type of environment are not adapted to slow flowing waters, which, among other distinct features, are low in oxygen (Chamon & Rapp Py-Daniel, 2014). The Tocantins river basin has been strongly affected by the construction of hydroelectric dams for the past 30 years. The first significant dam constructed in the system was Tucuruí (Pará state), in 1984, in the lower curse of the river. A second major dam was subsequently built in its upper course, at Serra da Mesa (Goiás state). Several other dams are now in operation or are planned in the Tocantins basin: Cana Brava (Goiás state), and São Salvador, Peixe Angical, Lageado and Estreito (Tocantins state) (Agostinho et al., 2009). Results of the alteration of the natural conditions of the rivers in the Tocantins basin are well documented. Mérona et al. (2010), for instance, concluded that lake formation in the rio Tocantins resulted in major changes in the composition of fishes in the extension of the river studied, and promoted the disruption of migratory routes and the disappearance of some species.

In the lower course of rio Tocantins, most examined specimens listed in this study were collected before the implementation of the Tucuruí dam, or in tributaries outside the area directly under the influence of that construction. Santos et al. (2004) reported on a decline in the population of 22 species of fishes after the Tucuruí dam construction. Several loricariids were included in their report, among them some species of Pseudacanthicus, including P. pitanga, which was referred by them as P. spinosus. In the Marabá region, however, P. pitanga is still reported as a relatively common ornamental resource (H. Anatole, IBAMA, pers. comm.), which suggests that the construction of the Tucuruí dam did not directly affected this species in the Marabá area.

Pseudacanthicus pitanga is also distributed in the median and upper Tocantins river, which is under the influence of three dams: Lajeado, Peixe Angical and São Salvador. In the median and upper Tocantins river, where the same scenario occurs, most lots examined were collected in the regions before being deeply altered by the Lajeado dam in 2002, the Peixe Angical dam in 2006, and the São Salvador dam in 2009. In areas under the influence of the Peixe Angical and São Salvador dams, there was capturing of P. pitanga during monitoring, between 1998 until 2008 (C. S. Agostinho, UFT, per. comm.). However, no collecting efforts to capture Pseudacanthicus species have been made recently, and hence there is a lack of data on the abundance of the group. Apparently, since P. pitanga has an extensive distribution in the rio Tocantins and still occurs in areas impacted by several enterprises and deforestation, according to IUCN criteria it is categorized as Less Concern (LC) even with the decrease of subpopulations in some areas.

The impact on several Amazonian rivers due to hydroelectric damming is a process that has substantially accelerated in the last 10 years. In the process, species that are naturally rare and/or endemic to specific habitats may suffer a drastic population decline and even become extinct in nature (Chamon & Py-Daniel, 2014). Unfortunately, our understanding of several aspects of the fish fauna of those regions, including their ecology, biology, taxonomy and phylogeny, has not increased at a similar pace. Although many studies have been made on Amazonian fish fauna diversity, most of them, until now, were conducted with financial support by hydroelectric concessionaries in response to environmental laws (Agostinho et al., 2009; Santos et al., 2004). The ichthyological community interested in those matters should, ideally, coordinate efforts in order to face the challenge of increasing our understanding of the fish diversity of the Amazonian region before a substantial portion of its diversity is irreversibly lost due to the promotion of hydroelectric power by the Brazilian government in the last decade.

Comparative material. Pseudacanthicus leopardus: ANSP 39345, holotype 71.6 mm SL. AUM 35738, 1 d&c, 41.1 mm SL. INPA 25865, 1 d&c, 54.1 mm SL. P. serratus: RMNH 3125, holotype, 148.7 mm SL. P. fordii: BMNH 1866.8.14.148-152, sintypes, 4, 117,08–144,97 mm SL. P. spinosus: MNHN A-9577, holotype, 262. 6; MZUSP 23992, 1 d&c, 83,3 mm SL. MZUSP 24010, 1 d&c, 60.2 mm SL; MZUSP 108573, 1 skeleton, 119.8 mm SL. Pseudacanthicus sp. “Xingu 1: INPA 31804, 1 d&c, 71.1 mm SL. Pseudacanthicus sp. “Xingu 2: MZUSP 108567, 1 skeleton, 121.2 mm SL; MZUSP 108572, 1 skeleton, 125.0 mm SL. Pseudacanthicus sp. “Tapajós: MZUSP 108195, 1 eskeleton, 109.2 mm SL.

Acknowledgments

The author wishes to thank Mark Sabaj Pérez and John Lundberg (ANSP), Scott Schaefer (AMNH), Mary Anne Rogers (FMNH), Patrick Campbell (NHM), Lúcia Rapp Py-Daniel and Jansen Zuanon (INPA), Roman Causse (MNHN), Michel Gianetti and Osvaldo Oyakawa (MZUSP), Paulo Lucinda (UNT), Ronald de Ruiter (RMNH),

A NEW SPECIES OF ANCISTRINI FROM NORTH BRAZIL.
References

Peckoltia sabaji, a new species from Guiana Shield (Siluriformes: Loricariidae). Zootaxa, 334, 1–12.

